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A B S T R A C T

To glean accurate information from social networks, people should distinguish evidence from hearsay. For
example, when testimony depends on others’ beliefs as much as on first-hand information, there is a danger
of evidence becoming inflated or ignored as it passes from person to person. We compare human inferences
with an idealized rational account that anticipates and adjusts for these dependencies by evaluating peers’
communications with respect to the underlying communication pathways. We report on three multi-player
experiments examining the dynamics of both mixed human–artificial and all-human social networks. Our
analyses suggest that most human inferences are best described by a naïve learning account that is insensitive
to known or inferred dependencies between network peers. Consequently, we find that simulated social learners
that assume their peers behave rationally make systematic judgment errors when reasoning on the basis
of actual human communications. We suggest human groups learn collectively through naïve signaling and
aggregation that is computationally efficient and surprisingly robust. Overall, our results challenge the idea
that everyday social inference is well captured by idealized rational accounts and provide insight into the
conditions under which collective wisdom can emerge from social interactions.
1. Introduction

Social learning is a key driver of the success of the human species
(Henrich, 2017). It enables people to acquire knowledge vicariously,
by observing the behavior of others (Bandura & McClelland, 1977),
and via more explicit forms of information exchange (Jern & Kemp,
2015; Lucas et al., 2014). When it works, social learning can be
advantageous (Laland, 2004; Rendell et al., 2011), supporting effi-
cient learning and rational behavior at a population level (Krafft,
Shmueli, Griffiths, Tenenbaum, & Pentland, 2020)—thereby enabling
transmission of accumulated insights and wisdom to bootstrap future
generations’ learning (Kleiman-Weiner, Sosa, Gershman, & Cushman,
2019). When it falls short, social learning can lead to poor collective
outcomes. For instance, repeated sharing of redundant information
between agents can result in echo chambers and misinformation cas-
cades (Fränken & Pilditch, 2021; Jasny, Waggle, & Fisher, 2015).
Likewise, persistent exposure to harmful or inaccurate content can
precipitate moral outrage (Brady, McLoughlin, Doan, & Crockett, 2021;
Crockett, 2017), endorse science denial (Scheufele, Hoffman, Neeley, &
Reid, 2021), amplify political polarization (Levin, Milner, & Perrings,
2021; Tokita, Guess, & Tarnita, 2021), and trigger financial bubbles and
crashes (De Martino, O’Doherty, Ray, Bossaerts, & Camerer, 2013).

One important aspect of successful social learning is the ability
to distinguish the communication of new first-hand evidence from
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hearsay (Berg, 1993; Budescu & Yu, 2007; Enke & Zimmermann,
2019; Hahn, Hansen, & Olsson, 2020; Jönsson, Hahn, & Olsson, 2015;
Whalen, Griffiths, & Buchsbaum, 2018). When agents communicate
with one another, or base their beliefs on shared evidence, there is
a danger of information becoming inflated or ignored as it spreads
through a social network. For example, when two colleagues B and C
recommend a new local coffee shop, it might seem like a ringing en-
dorsement, until you learn that only B has been to the coffee shop while
C just heard about it from B. This makes C’s testimony non-independent
and in this case, practically worthless. From the perspective of rational
analysis (Oaksford, Chater, et al., 2007), dependencies between agents
determine how much weight one of them should place on what each
of the others says. Specifically, rational social learners should use their
knowledge about who tends to communicate with whom – the structure
of their social network – to make inferences about the truth behind a
claim. Similarly, rational social learners should consider the timing and
content of agents’ statements to infer who is learning from whom, and
when social judgments are indicative of new first-hand evidence.

In line with these predictions, recent empirical studies have shown
correlations between human inferences and rational model simula-
tions when reasoning with dependent sources of information (Fränken,
Theodoropoulos, Moore, & Bramley, 2020; Whalen et al., 2018) as
well as concordance between a rational theory-of-mind based frame-
work and problems of reverse engineering the intended meaning of
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Fig. 1. High-level overview of the paper. [a] Task illustration from the perspective of agent A (the focal participant across experiments). Over the course of ten trials, participants
reason about their unknown location in space, i.e., whether they are on Planet Blue or Planet Red. Each planet has a different proportion of red and blue fish. On Planet Blue, 2

3
of the fish are blue and 1

3
are red. On Planet Red, the proportions are reversed. These proportions are known to participants. At each trial 𝑡, participants sample private evidence

from the unknown planet ∈ {blue fish: , red fish: ,no evidence: } and observe social evidence corresponding to the previous judgments provided by two other agents
(agents B and C). Participants then provide judgments about the planet they are on using a seven-point scale, ranging from 3-blue (highly confident planet blue) to 3-red (highly
confident planet red), as well as a structure judgment about the communication structure between all three agents. Participants know that other agents’ judgments are elicited using
the same seven-point scale and that all are incentivized to be correct. [b] Illustration of computational models. The baseline model (Level-0) uses a beta-binomial model to update
its beliefs strictly from private evidence. The naïve social learning model (Level-1) aggregates other agents’ judgments and inverts a generative model of the observed judgments to
infer the underlying belief (and thereby the evidence), followed by beta-binomial updates combining both observed private evidence and other agents’ inferred private evidence.
The idealized rational model (Level-2) further conditions its inferences about the unknown private evidence on the communication structure (i.e., it corrects for dependencies in
evidence), followed by the same beta-binomial updates as the Level-1 model. [c] Experimental setup. In Experiment 1, participants (agent A) interact with two idealized (artificial)
agents whose judgments were fixed across conditions. Between conditions, we manipulate whether participants (agent A) receive no structure information, are told that C could
see B’s judgments or the reverse. In Experiments 2–3, the focal participant (agent A) interacts with two other human participants (B & C) and the actual network structure is
manipulated across two conditions. Participants are informed about the network structure in Experiment 2 but must infer it in Experiment 3. (For interpretation of the references
to color in this figure legend, the reader is referred to the web version of this article.)
others’ utterances or the beliefs and desires that caused their behavior
more generally (Goodman & Stuhlmüller, 2013; Hawthorne-Madell &
Goodman, 2019; Jara-Ettinger, Gweon, Schulz, & Tenenbaum, 2016;
Jara-Ettinger, Gweon, Tenenbaum, & Schulz, 2015; Lucas et al., 2014;
Wu et al., 2021). In these works, social inference is grounded in a
‘‘utility-maximizing’’ assumption, making it possible to reverse engineer
the causes of peers’ behavior by inverting a generative model of how
they ought to rationally update and express their beliefs to achieve
their goals (Baker, Jara-Ettinger, Saxe, & Tenenbaum, 2017; Baker,
Saxe, & Tenenbaum, 2009; Jara-Ettinger, Schulz, & Tenenbaum, 2020;
Lopez-Brau, Kwon, & Jara-Ettinger, 2022).

While there is good evidence people are capable of these kinds of
inferences, in this paper, we challenge the idea that social learning is, in
general, well captured by such computationally involved and idealized
rational accounts. To investigate this, we study human learning in
micro social networks made up of both simulated and actual human
learners. We find instead that social inference in this iterated online
2

multi-person setting is more often dominated by computationally cheap
‘‘naïve’’ inferencing in which learners integrate their peers judgments
at face value, lacking sensitivity to the nuances of their dependencies
and redundancies. Inspired by standard ‘‘urn’’ tasks (Anderson & Holt,
1997), we develop a novel social learning task in which participants
combine first-hand observations (private evidence) with judgments from
two other agents who are making their own private observations (social
evidence). Participants are tasked with inferring a property of their
shared environment (planet judgment) and in some conditions also with
inferring the underlying communication structure between themselves
and the other agents (structure judgment ; Fig. 1a). Since participants
cannot directly access each other’s private evidence, to succeed they
must estimate the summative impact of the unknown private evidence
seen by the other agents (simulated or human) from observations of
the their public judgments and combine this with their own private
evidence. One way to approach this task is by attempting to invert a
generative model of the origins of peers’ judgments, taking into account
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the likely dependencies in the social evidence due to the structure
of the network and iterated nature of the task (e.g., Whalen et al.,
2018). In contrast, pilot work in a similar task (Fränken, Valentin,
Lucas, & Bramley, 2021) suggested that this behavior may be more of
an exception than a norm: many participants may adopt a more naïve
approach, where they simply incorporate other agents’ judgments in a
heuristic manner.

To test this and understand how participants make sense of the
social evidence, we will analyze behavior using three nested compu-
tational models (Fig. 1b), which, akin rational speech act models (c.f.
Frank & Goodman, 2012), assume different levels of recursion: (1)
A baseline model (Level-0) which ignores social evidence and forms
inferences strictly from private evidence, (2) a computationally cheap,
naïve social learning account (Level-1), based on Fränken et al. (2021),
which aggregates other agents’ judgments at their face value, and (3) an
idealized rational account (Level-2) which, similar to rational models
of testimony (e.g., Fränken et al., 2020; Pilditch, Hahn, Fenton, &
Lagnado, 2020; Whalen et al., 2018; Xie & Hayes, 2022), conditions
its inferences about the unknown evidence on the underlying com-
munication structure between agents. Using our task and modeling
infrastructure, we study human inferences across three behavioral ex-
periments. Our experiments differ in terms of the number of human
versus artificial agents making up the network, as well as in terms of
these agents’ knowledge about the structure of the network (Fig. 1c). In
Experiment 1, there is just one human participant per network (agent
A) who interacts with two artificial agents (B and C). In Experiments
2–3, a focal participant (agent A) interacts with two other human
participants (agents B and C).

The rest of our paper is structured as follows: We first introduce
our social learning task (Task), then formalize inferences in our task
through the lens of our computational models (Computational Models).
Next, we describe our three behavioral experiments and report our find-
ings (Experiments). We then conclude with a discussion of the broader
impact and also the limitations of our work (General Discussion).

2. Task

In our social learning task, participants have to combine their own
private evidence samples from the environment with other agents’
judgments to make their own judgments (see Fig. 1a & Fig. 2 for an
illustration. See Fig. A.1 and our online for full instructions). Under
our minimal cover story, participants have crash landed on one of
two planets with different proportions of blue and red fish.
Participants are told that on the first planet, Planet Blue, 2

3 of the fish
are blue, and 1

3 of the fish are red. On the second planet, Planet Red,
proportions are reversed. Aside from the different proportions of red
and blue fish, the planets are indistinguishable. Over the course of
ten trials participants sample private evidence by fishing, occasionally
catching either a blue ( ) or red ( ) fish and so learning about the
roportion of fish on the current planet. The probability with which
articipant catch a blue or red fish versus no fish (i.e., no evidence
arked as ) at each trial is unknown to participants.

Alongside their own private observations, participants can see the
revious judgments provided by two other agents. Importantly, the
rivate evidence collected by other agents is never observed by par-
icipants. Moreover, participants do not know about the frequency
ith which other agents observe private evidence, nor do they know
t which trial other agents observe private evidence. The only thing
articipants know is that other agents are on the same planet, and
ence the evidence sampled by the other two agents must come from
he same distribution. To succeed in the task, participants must thus
nfer the summative impact of the unknown private evidence seen by
he other two agents from observations of the other agents’ public
udgments and combine it with their own private evidence. Participants
3

ave to provide a judgment about the planet they are on repeatedly s
cross a series of ten trials, using a seven-point scale ranging from 3-
lue (highly confident planet blue) to 3-red (highly confident planet
ed). This in turn forms the social evidence that other participants
ee (depending on their position in the network). Participants can
lways see both their own history of private evidence samples, their
wn previous judgments, but crucially also the previous judgments of
either, one, or both other agents depending on their position in the
etwork.

When inferring the unknown private evidence from other agents’
udgments, participants may or may not be told about the communi-
ation structure between themselves and the other two agents. Specifi-
ally, our task enables us to manipulate the social information network
who actually sees whose judgments – as well as manipulating par-

icipants beliefs about the parts of the network they do not observe
irectly—whether other agents can see their judgments, or each other’s
udgments. The true structure influences how information propagates
nd as such participants structure beliefs influence the weights they
hould assign to the judgments of other agents (i.e., discount or increase
he inferred evidence behind other agents’ judgments). For example, if
gent A believes that agent C sees agent B’s judgments, they should
nticipate that there is likely to be some redundancy whereby C’s judg-
ents are partly a consequence of B’s (akin to our coffee shop example

rom the introduction). If C makes similar judgments to B perhaps they
ave not seen any evidence of their own. Alternatively, if C’s judgments
iffer dramatically from B’s (Fig. 2, left), this would suggest that C
as observed substantial evidence, enough to override the influence
f judgments from B. Furthermore, if the distal network structure is
nknown to an agent, there is the potential for them to infer it by
ecognizing patterns of inheritance (i.e., if C’s judgment reliably shifts
n line with B’s preceding judgment). In our experiments, we either
xplicitly provide the network structure to participants (Experiment 1,
onditions two and three, and Experiment 2) or withhold structure
nformation (Experiment 1, condition one, Experiment 3). In conditions
here we withhold structure information, at the end of the task we
ave participants provide a structure judgment (Fig. 2, right). This
etup enables us to study whether participants aggregate judgments
t their face value, versus additionally consider and accommodate
otential redundancies implied by the communication structure, and
urther whether they can infer this structure from the communication
equences. We next formalize these intuitions using a nested set of
omputational models.

. Computational models

verview
We formalize learning in our tasks through the lens of Bayesian

nference. At a high-level, the idea is that agents assign different de-
rees of belief to different states of the world, which we represent using
robability distributions. As they encounter new private (binomial)
vidence ∈ {blue fish: , red fish: ,no evidence: } at each trial,

agents can update this distribution using conjugate updates within a
beta-binomial scheme ( → no update; see Fig. 3, left). Given a belief
such as ℎ ∼ 𝐵𝑒𝑡𝑎(𝛼 = 3, 𝛽 = 2), we assume agents derive probability

asses for each of the 𝑘 = 7 discrete judgment options using the
umulative density of the beta distribution 𝐼𝑥(𝛼, 𝛽):

(𝑦𝑖 ∣ ℎ) = ∫

𝑦𝑖∕𝑘

(𝑦𝑖−1)∕𝑘
Beta(𝑥; 𝛼, 𝛽)𝑑𝑥 (1)

or each 𝑦𝑖 where 𝑖 ∈ {1, 2,… , 𝑘} (see Fig. 3, right). Moreover, given
n observed judgment, such as ‘‘1-red’’, shown in Fig. 3, one can infer
distribution over possible beliefs ℎ and thus make a guess about the

vidence going into this judgment by ‘‘inverting’’ the inference model.
he primary difference between our computational models listed below

ies in the mechanism used to apply this inversion. This allows us to
tudy whether people are primarily using computationally cheap, naïve
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Fig. 2. Example trial from Experiment 1. Left: Participants (agent A) provide a planet judgment at trial ten. At this trial, the participant did not observe additional private evidence
(i.e., they did not catch fish). Previous private evidence (one red fish observed at trial two), the participant’s own judgments, as well as the previous judgments provided
by agents B and C are shown in the trial summary section. In the displayed condition (A told C sees B), the communication structure was known to participants. In addition to
explaining the communication structure to participants in the instructions (Fig. A.1), the trial summary section includes arrows to indicate who can see whose judgments. Right:
In condition one with no structure information, participants (agent A) provide a structure judgment after completing all ten planet judgments. (For interpretation of the references
to color in this figure legend, the reader is referred to the web version of this article.)
Fig. 3. Illustration of inference setup. Left: agents update their beliefs upon observing private evidence via conjugate updates to their beta distribution. For example, upon observing
a red fish , an agent increments the 𝛼 parameter by one to update its belief from ℎ ∼ 𝐵𝑒𝑡𝑎(𝛼 = 2, 𝛽 = 2) to ℎ ∼ 𝐵𝑒𝑡𝑎(𝛼 = 3, 𝛽 = 2). Right: agents use their beliefs ℎ ∼ 𝐵𝑒𝑡𝑎(𝛼, 𝛽)
to make judgments by assigning probabilities to each response option on the seven-point scale. Similarly, given an observed judgment, such as ‘‘1-red’’ which corresponds to the
highest bar with a gray border, agents can infer the most likely belief (and thus, the underlying evidence) that must have produced the observed judgment by inverting the model.
This setup allows agents to flexibly infer unknown private evidence from observed judgments. (For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)
(Level-1) inferences – which were previously explored in a simplified
setting in Fränken et al. (2021) – or whether people use rational,
structure-sensitive (Level-2) inferences—as proposed in other previous
work (e.g., Fränken et al., 2020; Pilditch et al., 2020; Whalen et al.,
2018).

Baseline: Level-0 Inference
Our baseline model, Level-0 inference, disregards social evidence

and thus applies no inversion of other agents’ beliefs. Instead, the Level-
0 model strictly updates beliefs ℎ ∼ 𝐵𝑒𝑡𝑎(𝛼, 𝛽) upon observing private
evidence by sequential application of Bayes’ rule 𝑝(ℎ ∣ 𝑑𝑡) ∝ 𝑝(𝑑𝑡 ∣ ℎ)𝑝(ℎ)
at each trial 𝑡 using simple conjugate updates:

𝛼𝑡 =

{

𝛼𝑡−1 + 1 if 𝑑𝑡 =
𝛼𝑡−1

𝛽𝑡 =

{

𝛽𝑡−1 + 1 if 𝑑𝑡 =
𝛽𝑡−1

(2)

Naïve Social Learning: Level-1 Inference Our first social inference
model, Level-1 inference, combines observed private evidence with
observed judgments from other agents to update beliefs ℎ ∼ 𝐵𝑒𝑡𝑎(𝛼, 𝛽).
Specifically, for every other agent 𝑖, Level-1 uses that agent’s most
4

recent judgment 𝑦(𝑖)𝑡−1 to compute a posterior probability for each of
the agent’s most recent private evidence observations 𝑝(𝑑(𝑖)𝑡−1 ∣ ℎ

(𝑖)
𝑡−2, 𝑦

(𝑖)
𝑡−1)

given the agent’s previous belief ℎ(𝑖)𝑡−2 and observed judgment 𝑦(𝑖)𝑡−1:

𝑝(𝑑(𝑖)𝑡−1 ∣ ℎ
(𝑖)
𝑡−2, 𝑦

(𝑖)
𝑡−1) ∝ 𝑝(𝑦(𝑖)𝑡−1 ∣ ℎ

(𝑖)
𝑡−2, 𝑑

(𝑖)
𝑡−1)𝑝(𝑑

(𝑖)
𝑡−1) (3)

Here, ℎ(𝑖)𝑡−2 corresponds to agent 𝑖’s own beta-distributed belief prior
to incorporating their private evidence observation 𝑑(𝑖)𝑡−1. For simplic-
ity, Level-1 inference assumes that other agents are ‘‘reliable’’ (c.f.
Hawthorne-Madell & Goodman, 2019), meaning that they assign a
higher likelihood to response bins with a high posterior probability
under their beliefs (see Additional Model Details, for further details).
Consequently, Level-1 inference produces a prediction about the most
likely evidence 𝑑(𝑖)𝑡−1 leading to the observed judgment 𝑦(𝑖)𝑡−1. This infer-
ence captures how the previous belief ℎ(𝑖)𝑡−2 of an agent 𝑖 must have
changed in response to the inferred evidence to produce the observed
judgment. As an example, imagine that ℎ(𝑖)𝑡−2 is equal to 𝐵𝑒𝑡𝑎(𝛼 = 1, 𝛽 =
1). If we now observe a new judgment 𝑦(𝑖)𝑡−1 which is equal to ‘‘1-blue’’,
we would identify 𝑑(𝑖)𝑡−1 = as the most probable evidence leading
to the new judgment. Importantly, this inference process allows us
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to incorporate uncertainty, meaning that we update our belief about
another agent’s parameters (𝛼 = 1 and 𝛽 = 1) based on the probability
f versus given 𝑦(𝑖)𝑡−1. For example, assuming a uniform prior over

private evidence and a judgment such as ‘‘1-blue’’, we may arrive at a
posterior probability of 0.95 for 𝑑(𝑖)𝑡−1 = , a probability of 0.01 for
(𝑖)
𝑡−1 = , and a probability of 0.04 for 𝑑(𝑖)𝑡−1 = , meaning that the

updated marginal belief about 𝑖’s belief ℎ(𝑖)𝑡−1 corresponds to 𝐵𝑒𝑡𝑎(𝛼 =
1.01, 𝛽 = 1.95).

Level-1 inference assumes that all agents form beliefs independently
of one another, that is, implicitly and erroneously assuming agents
never observe each other’s judgments. Given this assumption, Level-1
inferences can update their belief ℎ at each time step by conditioning
jointly on their current private evidence 𝑑𝑡 and inferred evidence
behind the judgments ∈ {ℎ(1)𝑡−1,… , ℎ(𝑛)𝑡−1} from 𝑛 independent agents:

𝑝(ℎ ∣ 𝑑𝑡, ℎ
(1)
𝑡−1,… , ℎ(𝑛)𝑡−1) ∝

𝑝(ℎ(1)𝑡−1,… , ℎ(𝑛)𝑡−1 ∣ 𝑑
(1)
𝑡−1,… , 𝑑(𝑛)𝑡−1)𝑝(𝑑𝑡 ∣ ℎ)𝑝(ℎ).

(4)

where 𝑝(ℎ ∣ 𝑑𝑡, ℎ
(1)
𝑡−1,… , ℎ(𝑛)𝑡−1) corresponds to Level-1’s posterior belief

and 𝑝(ℎ(1)𝑡−1,… , ℎ(𝑛)𝑡−1 ∣ 𝑑(1)𝑡−1,… , 𝑑(𝑛)𝑡−1) are the inferred beliefs for 𝑛 agents
based on their own (unobserved) private evidence from the previous
time step obtained from Eq. (3).1

Rational Social Learning: Level-2 Inference
Our most sophisticated model, Level-2 inference, extends Level-1

by considering whether agents can see each other’s judgments during
previous time steps. Level-2 inference corrects for such dependencies
by evaluating agents’ beliefs to build a joint probability distribution
over the potential histories of private evidence observed by each agent
which can then be marginalized over. If structure is unknown this can
be done separately under every structure hypothesis 𝑔 ∈ 𝐺 and the
learner can additionally marginalize over their structure uncertainty.
Formally, Level-2 inference can be expressed as:

𝑝(ℎ(1)𝑡−1,… , ℎ(𝑛)𝑡−1 ∣ 𝑑
(1)
𝑡−1,… , 𝑑(𝑛)𝑡−1, 𝑔) =

∑

𝑔∈𝐺
𝑝(ℎ(1)𝑡−2)

𝑛
∏

𝑖=2
𝑝(ℎ(𝑖)𝑡−1 ∣ ℎ

(1)
𝑡−2,… , ℎ(𝑖−1)𝑡−2 , 𝑑(𝑖)𝑡−1, 𝑔)𝑝(𝑔).

(5)

Here, 𝑝(𝑔) corresponds to the probability of a given network struc-
ture 𝑔 ∈ 𝐺 and 𝑝(ℎ(𝑖)𝑡−1 ∣ ℎ(1)𝑡−2,… , ℎ(𝑖−1)𝑡−2 , 𝑑(𝑖)𝑡−1, 𝑔) is computed recursively
until a termination condition is met. In our setup, this termination con-
dition could be (1) finding an agent that has no parents (i.e., an inde-
pendent agent) or (2) the start of the game if there are no independent
agents.

Importantly, in the present analyses, 𝑔 was provided to Level-
2 inference (either through experimental instructions or by eliciting
structure judgments from participants), which allows us to disregard
the marginalization over structures 𝐺. We describe how to update
𝑃 (𝐺) given a judgment sequence in Appendix Structure Learning. To
understand the intuition behind Level-2 inference, consider condition
two (A told C sees B) from Experiment 1. Here, B is an independent
agent and the parent of C, who can see B’s judgments. To infer the
evidence behind both B’s and C’s observed judgments, Level-2 infer-
ence involves first computing 𝑝(𝑑(𝐵)𝑡−1 ∣ ℎ(𝐵)𝑡−2, 𝑦

(𝐵)
𝑡−1) and updating ℎ(𝐵)𝑡−1

based on the inferred evidence 𝑑(𝐵)𝑡−1. Next, it involves inferring 𝑝(𝑑(𝐶)
𝑡−1 ∣

ℎ(𝐶)
𝑡−2, 𝑦

(𝐶)
𝑡−1, 𝑑

(𝐵)
𝑡−2) which conditions on the putative evidence B observed

two time steps ago 𝑑(𝐵)𝑡−2 which C presumably inferred and incorporated
at the previous time step. Thereafter the model updates ℎ(𝐶)

𝑡−1 based on
both the private evidence imputed for C 𝑑(𝐶)

𝑡−1 and the private evidence
C previously imputed from B 𝑑(𝐵)𝑡−2. Consequently, if for example C

1 In our task, agents cannot see the judgments being made by other agents
n the current trial 𝑡 prior to providing their own judgments, which is why the

indices in Eq. (3) and Eq. (4) refer to the other agents’ judgments provided at
the previous time step 𝑡 − 1.
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provides a judgment 𝑦(𝐶)
𝑡−1 equal to ‘‘1-red’’ upon observing a judgment

𝑦(𝐵)𝑡−2 equal to ‘‘1-red’’ from B at 𝑡 − 2, Level-2 inference accounts for
this dependency when inferring 𝑑(𝐶)

𝑡−1, such that the evidence most likely
o have produced the observed judgments is not counted twice (see
ependency in Fig. 1b).2

ccommodating Autocorrelation: ‘‘Sticky’’ Models In our task, par-
icipants are required to make the same judgment ten times as evidence
rrives (Fig. 2, left). This setup presents a challenge for the above infer-
nce models, which predict judgments at a specific time point are based
n the total evidence (both observed and inferred), and are independent
f the participant’s previous judgments. A wealth of research shows that
eople’s responses when probed repeatedly tend to be autocorrelated
ver and above what is licensed by the evidence. This has been shown
n both single learner (e.g., Bramley, Dayan, Griffiths, & Lagnado,
017; Dasgupta, Schulz, Tenenbaum, & Gershman, 2020; Hogarth &
inhorn, 1992; Lieder, Griffiths, Huys, & Goodman, 2018) and multi-
gent settings (e.g., Fränken, Theodoropoulos, & Bramley, 2022). To
artially accommodate such order effects, and thereby enhance our
odels’ ability to capture the meaningful patterns in participants’ judg-
ent sequences, we thus incorporated an additional variant (‘‘family’’)

f the inference models. In addition to using the cumulative density
𝑥(𝛼, 𝛽) (Eq. (1)) to assign discrete probabilities to each judgment 𝑦𝑖 ∈
𝑦1, 𝑦2,… , 𝑦𝑘} followed by a softmax function, the second family of
odels incorporates an additional free parameter (mixture weight 𝜋),
hich mixes each soft-maxed model prediction with the possibility
f simply ‘‘sticking’’ to the previous judgment (see Additional Model
etails, for details). Lastly, we include a random baseline model that
redicts each judgment with a uniform probability of 1

𝑘 (𝑘 = 7),
esulting in a total of seven competing models for each experiment.3

4. Experiments

Using our task and computational models, we study human infer-
ences across three behavioral experiments. In Experiment 1, one partic-
ipant (playing agent A) interacts with two simulated agents (agents B &
C). In Experiments 2 and 3, a focal participant (agent A) interacts with
two other real human participants (agents B & C). For each experiment,
we first unpack participants’ judgment patterns descriptively, followed
by an aggregate (group-level) analysis comparing directional differ-
ences between conditions. We then evaluate each model’s predictive
accuracy on an individual participant level using leave-one-out cross-
validation, which is the main focus of our analysis. The experiments
were not preregistered. Based on our previous work (Fränken et al.,
2020, 2021), we hypothesized that participants’ judgments setting
would be best described by a naïve, Level-1 account.

4.1. Experiment 1

4.1.1. Setup
We first examined a controlled setting with one participant (agent

A) and two artificial agents, B and C, each operating under known
and unknown social network structures. Using this setup, we studied
participants’ inferences across three between-subject conditions. In the
first condition, no structure information, participants did not receive any
information about the relationship between B and C, thus requiring
them to infer the underlying network structure at the end of the game.
In the second condition, A told C sees B, and the third condition, A told
B sees C, participants were instructed that agents B and C were non-
independent changing the impact of their judgments from the Level-2
model perspective.

2 An example implementation of our algorithm is available in agent.py
in our online .

3 ‘‘Sticky’’ models were added as exploratory analysis after our data col-
lection was complete. Note also that our ‘‘sticky’’ models do not additionally
assume stickiness in inverting the evidence behind other agents’ judgments,

see Discussion.
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Fig. 4. Results from Experiment 1.[a] Average human and model judgments (y-axis) across the ten time steps (x-axis) of our task for each condition. [b] Cross-validation results
showing the number of participants best fit (y-axis) by each model (x-axis). [c] Average edge probabilities for participants (left) and a Bayesian structure learner (right; see
Structure Learning) provided in condition one with no structure information. (For interpretation of the references to color in this figure legend, the reader is referred to the web
version of this article.)
4.1.2. Participants
We recruited 150 adults from Prolific Academic (Palan & Schitter,

2018), aiming for a sample size of 50 participants randomly assigned
to each condition. Four participants dropped out, resulting in a final
sample of 𝑁 = 146 (35.94 ± 15.52, 98 female, 48 male). Of these, 47
participants were assigned to the first condition (no structure informa-
tion), 50 participants to the second condition (A told C sees B), and
49 participants to the third condition (A told B sees C). Participants
received a payment equivalent to an hourly rate of £5.02. This payment
included a base amount of £1.00 and a performance bonus of up to
£1.50. To incentivize high-quality judgments, we paid each participant
a small bonus of £0.15 on every trial in which the participant’s judg-
ment was in the correct direction on the scale from the midpoint, where
the ‘‘correct’’ direction was determined by the combined amount of
evidence observed by the entire network. Before starting the main task,
participants completed a brief training to familiarize themselves with
the game environment and reward structure. Detailed instructions are
provided in Fig. A.1 and our online .

4.1.3. Stimuli
In all three conditions, participants played the role of agent A and

caught a single red fish themselves on trial 2 (𝑡2) and no fish on any
other trial. In all three conditions the participants also saw the same
sequence of opposing judgments from B and C (Fig. 2, left), which,
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depending on the relationship between B and C, led to qualitatively
different predictions for Level-2 inferences.4 We selected a judgment
sequence for agents B and C to produce a large qualitative difference
for Level-2 predictions between conditions. When generating stimuli,
we assumed that agents B and C were reliable (c.f. Hawthorne-Madell &
Goodman, 2019), meaning that their provided judgments corresponded
to those with a high posterior probability under their respective beliefs
ℎ. The resulting judgment sequences for B and C are shown in Fig. 2,
left. We note that there is no ground truth in this condition as we picked
B’s and C’s judgments in advance to separate both model predictions
within a condition as well as a given model’s predictions between
conditions.

4.1.4. Results
We begin by describing participants’ average judgments (Fig. 4a)

across different conditions. In the first condition (no structure infor-
mation), the most likely private evidence distribution on the planet
indicated participants were on Planet Blue. Consistent with this, 80%
of participants gave a judgment in favor of Planet Blue at the final time

4 In the experiment, the roles of red and blue were randomized between
subjects and the simulated agents’ judgments were reversed accordingly.
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step (mean ± standard error = 1.16 blue ± 0.20). In the second con-
dition (A told C sees B), the most likely private distribution suggested
participants were on Planet Red. However, only 34% of participants
opted for Planet Red in the final judgment (and on average, preferred
blue with a mean of 0.34 blue ± 0.19). Finally, in the third condition,
65% preferred blue at the final time step (0.98 blue ± 0.21), which
again aligned with the true evidence distribution.

We next performed an aggregate group analysis to test for di-
rectional effects of our between-subject manipulation. Therefore, we
averaged participants’ judgments across time steps and performed
a (Kruskal & Wallis, 1952) analysis of variance (ANOVA) which re-
vealed a main effect of our manipulation (Kruskal’s 𝐻(2) = 13.73,
𝑝 < 0.005, 𝜖2 = 0.082, 95%). Pairwise (Mann & Whitney, 1947) 𝑈 -
tests (one-sided) further confirmed this result: judgments in condition
C sees B were significantly ‘‘redder’’ (mean judgment: 0.061 red, 95%
confidence interval [0.152 blue, 0.274 red]) as compared to the first
condition with no structure information (mean judgment: 0.471 blue,
95% confidence interval [0.763 blue, 0.179 blue], standardized 𝑈 -
score: 𝑍 = 3.51, 𝑝 < 0.001, CLES = 0.707). Similarly, contrasting
condition C sees B and condition B sees C (mean judgment: 0.297 blue,
95% confidence interval: [0.537 blue, 0.058 blue]) confirmed an effect
of our structure manipulation, with a ‘‘redder’’ average judgment in
condition C sees B compared to B sees C (standardized 𝑈 -score: 𝑍
= 2.36, 𝑝 < 0.01, CLES = 0.640). Both effects were significant at a
Bonferroni-corrected significance level of 0.05

3 . There was no difference
between condition one and three (standardized 𝑈 -score: 𝑍 = −1.63,
𝑝 > 0.05, CLES = 0.405).

To better understand individual-level behavior, we finally derived
quantitative predictions for each inference model. The number of par-
ticipants best predicted by each model during cross-validation within
each condition is shown in Fig. 4b. Results from our individual-
level analysis suggest predominantly naïve, structure-insensitive in-
ferences with a bias towards sticking with the previous judgment
(Level-1 sticky). Specifically, across all conditions, our Level-1 sticky
account best predicted 48% of participants overall, while 24% across
conditions were best characterized by the rational, structure-sensitive
Level-2 sticky competitor. The majority of the remaining 28% across
conditions were best accounted for by the Level-1 and Level-2 variants.
These results suggest that a nontrivial number of participants were able
to account for dependencies between agents’ judgments in line with
the predictions of Level-2 inference, while the majority were better
described by a structure-insensitive naïve account.

In condition one with no structure information, we wanted to ensure
that the simulated judgment sequences for B and C made it difficult to
infer the existence or direction of any dependency between B and C
since this would undermine the instruction manipulation. To test the
degree to which the sequence of simulated judgments were informative
about the communication structure, we present participants’ structure
judgments in condition one alongside posterior probabilities for each
connection under a Bayesian structure learning model; see Structure
Learning for details; Fig. 4(c). This reveals that a normative struc-
ture learner assigns a low probability to a dependent communication
structure being behind this sequence, assigning a probability of 0.03
to C sees B and 0.21 to B sees C. Participants’ edge selections were
also lower than random chance at 22% and 37%, suggesting that they
could not tell whether or not there was a dependency between B and
C. Overall, the above edge selections primarily functioned as a sanity
check and were deemed sufficiently low for our manipulation to be
effective. Interestingly, this analysis did reveal that both participants
and our structure learner frequently and erroneously hallucinate that
either or both of B and C were reacting to their judgments (i.e., those
of agent A).

Overall, in Experiment 1, the dominant pattern of judgments re-
flected naïve social inference, with most participants overlooking the
dependency between sources. This is also evidenced by a preference
for blue across all three conditions at the final time step, despite
7

the simulated agents’ judgments being rationally consistent with there
having been more red than blue fish caught overall in con-
dition C sees B (see Fig. 4a). Our group-level analysis revealed that,
averaged over time, participants’ judgments in condition C sees B were
significantly ‘‘redder’’ than in the other two conditions, qualitatively
in line with the Level-2 account which best predicted 24% of par-
ticipants’ individual inferences across conditions. This suggests that,
assuming a controlled setting with simulated agents, we are able to
replicate previous structure-sensitive inference (e.g., Fränken et al.,
2020; Whalen et al., 2018). However, our detailed investigation of
individual-level behavior revealed that this statistical effect was driven
by only a minority of the participants.

4.2. Experiment 2

4.2.1. Setup
A shortcoming of the simulated agent setting is that it is not clear

how human-like the behavior of the simulated agents is and what
effect that has on the judgments. To explore a slightly more naturalistic
setting, we next investigate inferences with three real participants.
For Experiment 2, we focused on a known network structure setting
and compared two between-subject conditions. In the first condition
(independent known) participants playing the roles of B and C were
independent of one another, that is they could not see each other’s
judgments but only received private evidence. In the second condition
(C sees B known), participant C could see participant B’s previous
judgments, making C’s judgments dependent on B. All participants were
made aware of the communication structure prior to starting the task
and it was visualized throughout the experiment (see Fig. 2a). Apart
from the above differences, instructions and procedures in Experiment
2 were identical to those in Experiment 1. Since this network structure
means that Agent A is the only one that has to deal with dependent in-
formation sources, we report our primary analyses from the perspective
of the focal participant (agent A).

4.2.2. Participants
To recruit participants via Prolific, we developed a client/server

application enabling real-time interactions between three randomly
matched participants using their web browser. Once matched, each
triad was randomly assigned to one of the two between-subject con-
ditions and the three participants were randomly assigned to one of
the three roles. Overall, we recruited 126 participants (25.82 ± 7.08,
70 female, 56 male) comprising 42 triads. Twenty-one triads (63 par-
ticipants) were assigned to condition one (independent known) and
another 21 triads (63 participants) were assigned to condition two (C
sees B known). Participants were paid as in Experiment 1.

4.2.3. Stimuli
Similarly to Experiment 1, the participant playing agent A observed

one red fish at the second trial. Meanwhile, the participant playing
agent B observed one blue fish on trial three, and agent C observed
one red fish on trial seven. The staggered and alternating private
evidence seen by players A, B and C was selected to produce differences
in the judgments of agent A depending on both the structure condition
and whether they performed predominantly naïve Level-1 or Level-2
inferences. To unpack why this is the case, recall that agent B does not
get any social evidence, and agent C gets only evidence about B’s earlier
judgments in condition two (C sees B known) meaning only agent
A needs to worry about dependence between judgments. Given this
setup, we anticipate that B will make blue-leaning judgments in both
conditions since all they see is one blue fish. In condition two, Agent
C will regard B’s blue-leaning judgments as initial evidence favoring
the blue planet before their own red catch leaves them finally with
a roughly neutral judgment. If A overlooks this dependency (naïve
inference), they miss the chance to deduce that C’s latterly neutral
judgment is actually most compatible with them having seen a red fish.



Cognition 242 (2024) 105633J.-P. Fränken et al.
Fig. 5. Results from Experiment 2. [a] Average human and model judgments (y-axis) across the ten time steps (x-axis) of our task for each condition. ‘‘Combined private evidence’’
refers to the ground truth, i.e., the predictions of an omniscient learner that had access to all private evidence observed by agents (see Fig. A.2b). [b] Cross-validation results
showing the number of participants best fit (y-axis) by each model (x-axis). (For interpretation of the references to color in this figure legend, the reader is referred to the web
version of this article.)
As a result, a naïve agent A will consider their own red fish and B’s blue
judgment as providing insufficient evidence for either planet, leading to
A holding a neutral final judgment in condition two. In the independent
structure condition one C is likely to make red-leaning judgments and
so A should also favor red on the balance of evidence. However, if
A correctly identifies the structure and adjusts for the dependency
between B and C in a rational, Level-2 manner, we would expect A
to infer the additional red fish from C’s neutral judgments in condition
two, resulting in preference for the red planet in both conditions.

4.2.4. Results
At the final time step, there was no statistical difference between

A’s judgment preferences across conditions (Fig. 5a). In condition one
(independent known), 52.4% of participants assigned to A preferred
Planet Red (mean ± standard error = 0.29 red ± 0.29). In condition
two (C sees B known), the preference for red remained the same at
52.4%, although the mean was smaller at 0.14 red ± 0.44, which
may be a result of the structure manipulation, despite there being no
differences between conditions when averaging A’s judgments across
time steps (standardized 𝑈 -score: 𝑍 = 0.70, 𝑝 > 0.05, CLES = 0.564).
Full judgment sequences are presented in Fig. A.3.5

We next repeated our cross-validation analysis, which again sup-
ported predominantly naïve inference with a bias towards sticking
close to earlier judgments (Level-1sticky) in condition two (C sees B
known), best predicting 62% of participants compared to only 10%
best accounted for by structure sensitive Level-2sticky (Fig. 5b). This
was a notably smaller percentage compared to Experiment 1. Note that
in condition one (independent known), Level-1 and Level-2 inference

5 As expected, 91.5% (condition one) and 100% (condition two) of par-
ticipants assigned to B preferred blue at the final time step (as all they saw
was one blue fish), while 47.6% (condition one) and 28.6% (condition two)
of participants assigned to C preferred red at the final time step, which was
in line with the fact that C could see B’s judgments in the second condition.
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predictions coincide as the naïve aggregation of evidence is the same
as assuming independence. Overall, results from Experiment 2 replicate
the pattern of predominantly naïve inferences found in Experiment 1
but now do so in a genuinely social scenario.

4.3. Experiment 3

4.3.1. Setup
In Experiment 2, we gave participants complete access to the struc-

ture of their social network (i.e., full knowledge of who sees whose
judgments). However, in real social interactions, we often have either
no or only limited or uncertain knowledge about other people’s precise
communication histories. To assess how this additional layer of uncer-
tain and complexity affects inferences in the current learning problem,
we finally studied a setting with three human agents and an initially
unknown social network structure. As with the first condition from
Experiment 1, participants had to provide structure judgments at the
end of the task which we used for the Level-2 model.

4.3.2. Participants
We used the same client/server software as in Experiment 2 to

synchronize participants into triads. Overall, we recruited 129 adults
(25.22 ± 7.04 years, 61 female, 68 male) through Prolific and paid as
in Experiments 1–2. Procedures were identical to Experiment 2 with the
only exception being the omission of the network structure instruction
and structure visualization throughout the task. Overall, 22 triads (63
participants) were assigned to condition one (independent unknown)
21 triads (63 participants) were assigned to condition two (C sees B
unknown).

4.3.3. Stimuli
As in Experiment 2, agent A caught a red fish at trial two, B caught

a blue fish at trial three, and C caught a red fish on trial seven.
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Fig. 6. Results from Experiment 3. [a] Average human and model judgments (y-axis) across the ten time steps (x-axis) of our task for each condition. ‘‘Combined private evidence’’
refers to the ground truth, i.e., the predictions of an omniscient learner that had access to all private evidence observed by agents (see Fig. A.2c). [b] Cross-validation results
showing the number of participants best fit (y-axis) by each model (x-axis). [c] Average edge probabilities for participants (left) and a Bayesian structure learner. Inferred edge
probabilities from B to C in condition two were higher (60% for participants and 75% for a normative structure learner) as compared to condition one in which B and C were
independent (31% for participants and 60% for a normative structure learner).
4.3.4. Results
There was no notable difference between A’s judgment preferences

across conditions at the final time step (Fig. 6a). In condition one
(independent unknown), 45.5% of participants assigned to A preferred
Planet Red (mean ± standard error = 0.41 red ± 0.38). In condition two
(C sees B known), the preference for red remained similar at 47.6%,
again with a lower average judgment of 0.29 red ± 0.25 which was
presumably a result of the structure manipulation, despite there being
no significant difference between conditions when looking at A’s time-
averaged judgment sequence (standardized 𝑈 -score: 𝑍 = 0.486, 𝑝 >
0.05, CLES = 0.544).6

Our cross-validation model fit for Experiment 3 revealed that
Level-1sticky best predicted 41% of participants in condition one, which
was again higher than Level-2sticky (23%; see Fig. 6b). In condition two,
Level-1Sticky and Level-2Sticky inference (conditioning on participants’
finally judged structure, see below) shared the same proportion of par-
ticipants best predicted (29%). Overall, these results provide additional
support for the previously found naïve pattern across conditions.

6 100% (condition one) and 100% (condition two) of participants assigned
to B preferred blue at the final time step (again, all they saw was one blue
fish). 68.2% (condition one) and 19% (condition two) of participants assigned
to C preferred red at the final time step, which was again in line with the fact
that C could see B’s judgments in the second condition.
9

Finally, examining the quality of the structure judgments, the pro-
portion of participants’ marking each edge is shown in Fig. 6c and
compared against the marginal posterior edge probabilities under our
Bayesian structure learning model. As expected, the proportion of
participants marking an edge from B to C was higher in condition two
(60% for participants and 75% for the Bayesian structure learner) than
in condition one which B and C were independent (31% for partic-
ipants and 60% for a normative structure learner). Notably though,
the accuracy of the structure judgments by both participants and the
normative structure learner were low. Both participants and the model
often wrongfully judged that their own (agent A’s) judgments were
visible to agents B and C.

4.4. Differences between experiments

An important consideration in interpreting the above findings is the
different nature of the social evidence (i.e., judgments by B and C)
between Experiments 2–3 and Experiment 1. The social evidence in Ex-
periment 1 was simulated to align with rational and reliable inference
patterns (see Eq. (A.2)), while in Experiments 2–3, the judgments by
B and C were made by actual human participants. Human judgments
varied across triads, often diverging from the patterns predicted by
rational simulations (see Fig. A.3). While this discrepancy had no
direct influence on our ability to characterize agent A’s (participant)
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inferences as predominantly naïve, it significantly affected the perfor-
mance of the structure-sensitive Level-2 learner. Specifically, Level-2
predictions diverged directionally from those of an omniscient observer
of all the caught fish (see Fig. 5a and Fig. 6a). Notably, in Experiment
3 condition two, where the social network structure was undisclosed
and agent C could see agent B’s judgments, Level-2 inferences in the
role of agent A led to predictions that were directionally wrong on
average, slightly favoring the blue planet (Fig. 6a) despite the overall
evidence observed by all agents being two red fish versus one blue
fish . This was due to Level-2 inference incorrectly assuming that
he human agents were also behaving like rational utility maximizing
earners, while model fitting suggests this was only true for a small
roportion of participants. Diverging from Level-2’s predictions, partic-
pants playing agent A made judgments actually aligned more closely
ith the ground truth, favoring the red planet in both conditions of
xperiments 3. This is consistent with the idea that participants relied
n simpler accumulation strategies, leading to inferences more robust
o the complexity and ambiguity inherent in social evidence.

. General discussion

A key feature of our analyses and results is that the structure of
social network has the potential to shape the beliefs of members,

ften away from the ground truth. As such, we view our results as
omplementary to prior simulation-based studies that demonstrate this
istorting effect of social network structure in simulations (Fränken
Pilditch, 2021; Hahn et al., 2020; Lewandowsky, Pilditch, Madsen,

reskes, & Risbey, 2019; Madsen, Bailey, & Pilditch, 2018; Madsen
Pilditch, 2018). These studies simulate how information propagates

hrough large artificial networks, typically assuming that social com-
unications are received and integrated accurately but ‘‘naïvely’’ (in

ur terminology), albeit exploring how they may be tempered by agent-
pecific considerations like trust. For example, Hahn et al. (2020) show
hat both dense connectivity and clustering in artificial social networks
educes the ‘‘truth tracking’’ of information propagation among other-
ise rational agents. Here we show that even in minimal three-person

ocial networks with known structure, the kinds of naïve inference that
roduce these distortions is the dominant behavior of human social
easoners.

Building on a distinct literature that has developed computational
odels of rational social learning, we noted how previous social infer-

nce accounts depend on a utility-maximizing assumption under which
eople reverse engineer one another’s mental states and the evidence
ehind them by inverting a generative model of how those people form
nd express their beliefs. Our experiments probed the extent to which
his framework captures real multi-agent social learning dynamics. The
esults suggest that while a minority of participants exhibit hallmarks
f sensitivity to the principles of such rational social inferences, the
ominant inference mode is more naïve, seeming to lack accommo-
ation of communication-history-based dependencies between peers.
ur results thus challenge a number of recent findings suggesting

hat human social learners reliably engage in sophisticated, rational
nferences when reasoning from others’ behavior (Baker et al., 2017;
ränken et al., 2020; Whalen et al., 2018). A possible implication of this
s that individuals may not only discount or inflate the evidence from
ependent sources when directly hearing from them, but also when
eceiving information about dependent sources’ opinions indirectly. For
nstance, if person B recommends a restaurant and mentions that person

also enjoys it, a naïve recipient A, upon meeting B and hearing about
he restaurant, may mistakenly update their beliefs based on B’s report.

Moreover, results from our all-human networks with noisy het-
rogeneous communication patterns demonstrate that assuming other
gents are rational reasoners (e.g., Jara-Ettinger et al., 2015) can
lso be a cause of systematic judgment errors when those agents fall
hort of this standard (Fig. 6a). Contrary to the directionally wrong
10

redictions by the rational Level-2 model predictions, human inferences
were surprisingly robust with most agent A participants ending up
with a directionally correct belief about the planet they were on.
This might suggest we adopt simpler models of our peers than the
utility-maximizing ‘‘homo economicus’’ central to more idealized ac-
counts (Baker et al., 2017, 2009; Jara-Ettinger et al., 2020), thereby
accounting for the fact that others’ reasoning strategies are also often
fallible and naïve. This is essentially the opposite move to attempting
to accommodate such inter-individual limitations and heterogeneity
explicitly in one’s social reasoning. For instance, one could articulate
a ‘‘Level-3’’ extension that attempts to anticipate the various depar-
tures peers make from rational inferencing (Alanqary et al., 2021).
However, this approach is computationally expensive and demands
additional theory-of-mind recursion and costly marginalization (Alon,
Schulz, Dayan, & Rosenschein, 2022; Camerer, Ho, & Chong, 2004;
Oey, Schachner, & Vul, 2022). On the face of it such complex reasoning
seems unlikely to be resource rational in most circumstances (Lieder
et al., 2018) given that the computational limitations of the social rea-
soner are on average going to be just as severe as those plaguing their
social peers. As such, we propose that, collectively, human societies
may find a better computation-accuracy trade-off in the social infer-
ence sphere through mutual adoption of a more naïve social learning
heuristics.

There are obvious limitations to our study: While our focus on
human–human interactions extends previous work that was restricted
to simulated social peers (Enke & Zimmermann, 2019; Fränken et al.,
2020) and known dependencies (Pilditch et al., 2020; Whalen et al.,
2018), the limited degree to which participants engaged in rational
inferences might be a result of the low-bandwidth of the social evidence
(i.e., rating scales) or the incentive structure (participants were re-
warded for their own success irrespective of others). Future extensions
of the present paradigm could thus explore the consequence of allowing
participants to provide richer, more linguistic, social evidence—and
so increase the bandwidth of communication channels in the net-
work. Moreover, extensions could examine the impact of cooperative
incentives, which might lead participants to signal strategically and
make correspondingly different social inferences in order to maxi-
mize a group’s overall payoff. Such a setting might plausibly result in
more deeply recursive social inferences, as a learner’s reward would
directly depend on the beliefs and performance of their peers. Coop-
erative incentives would also open the door to incorporating theories
of active learning (Coenen, Nelson, & Gureckis, 2019) and metacog-
nition (Fleming & Daw, 2017) to capture how people might use their
communication signals to resolve uncertainty about peers’ competence,
motivations, or about the social network structure. Another limita-
tion of the present work is that we did not account for participants’
perceived credibility or reliability estimates of other players, which
has previously been shown to influence social belief revisions and
dependency judgments (Bovens, Hartmann, et al., 2003; Hahn, Harris,
& Corner, 2009; Harris, Hahn, Madsen, & Hsu, 2016; Madsen, Hahn,
& Pilditch, 2020). Additional modeling extensions could thus probe
or manipulate learners’ beliefs about the expertise or trustworthiness
of peers’ judgments to better understand how people weigh private
versus social evidence. Furthermore, given that people’s judgments in
our task were best described by autocorrelated (‘‘sticky’’) variants of
our models, another extension could be to incorporate others’ tendency
towards autocorrelation when reasoning about their judgments. Finally,
it is important to further establish the conditions under which naïve
inference can be adaptive, as well as its implications for explaining pop-
ulation dynamics like information cascades (Bikhchandani, Hirshleifer,
& Welch, 1992) and echo chambers (Madsen & Pilditch, 2018).

In sum, we found that people’s inferences in an iterated social learn-
ing setting were relatively insensitive to dependencies between their
network peers. Moreover, we found that simulated rational learners
who assume peers behave rationally make systematic judgment errors
when reasoning from genuine noisy human judgments. In contrast,

human learners appear to succeed in our task through naïve inference
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Fig. A.1. Instructions shown to participants in Experiment 1 during condition two (A told C sees B). Full instructions available . .
strategies that are less sophisticated, but computationally efficient and
surprisingly robust. We take this as suggestive that a comprehensive
account of social cognition in the wild should take inferential naïvety
seriously as feature of human social learning dynamics.
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Appendix A

A.1. Additional model details

Following computation of discrete probabilities for each judgment
𝑦𝑖 ∈ {𝑦1, 𝑦2,… , 𝑦𝑘} given ℎ, we computed the expected loss for each
judgment:

𝐿(𝑦𝑖) =
∑

𝑦̄
𝑝(𝑦̄ ∣ ℎ)(𝑦𝑖 − 𝑦̄)2 (A.1)

to penalize judgments further away from the mid-point of the scale
prior to encountering evidence. As we assumed that participants started
the game with a uniform prior 𝐵𝑒𝑡𝑎(1, 1), this penalty effectively pushed
model predictions towards ‘‘0’’ at the start of the game prior to observ-
ing private evidence or observing other agents’ judgments.
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Fig. A.2. Inferred beliefs for each inference model (y-axis) across time steps (x-axis) for each experiment and condition. 𝛼 corresponds to the total number of observed + inferred
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redictions of an omniscient learner who does not have to infer evidence from other agents’ judgments but can ‘‘see’’ all the private evidence available to the network. (For
nterpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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We next used a softmax-function with inverse temperature param-
ter 𝜏 to obtain final choice probabilities for each 𝑦𝑖 ∈ {𝑦1, 𝑦2,… , 𝑦𝑘}:

(𝑦𝑖 ∣ ℎ) =
𝑒−𝐿(𝑦𝑖)𝜏

∑𝑖=𝑘
𝑖=1 𝑒

−𝐿(𝑦𝑖)𝜏
. (A.2)

We set 𝜏 = 10 (high reliability), resulting in a strong (practically
eterministic) preference for selecting the judgment with the highest
robability given observations. For the sticky variant of our inference
odels, we included an additional mixture weight 𝜋 to assess the
eight that participants placed on their previous judgment 𝑝(𝑦(𝑖)𝑡−1):

(𝑦(𝑖)𝑡 ∣ ℎ) = 𝜋𝑝(𝑦(𝑖)𝑡 ∣ ℎ) + (1 − 𝜋)𝑝(𝑦(𝑖)𝑡−1 ∣ ℎ). (A.3)

We obtained values for 𝜋 and 𝜏 by joint maximum likelihood
optimization using L-BFGS approximation implemented in SciPy.

A.2. Structure learning

To sanity check our manipulations in the first condition of Experi-
ment 1 as well as participants’ ability to infer the unknown structures in
Experiment 3, we used a Bayesian structure learning model to infer the
most probable edges between agents from the observed communication
sequences. Let us denote the set of judgments of all the agents at time
𝑡 as 𝐘 = 𝑦(1), 𝑦(2),… , 𝑦(𝑛), where 𝑦(𝑖) is the judgment of agent 𝑖 at time
12

𝑡 𝑡 𝑡 𝑡 𝑡 s
𝑡. Let us denote 𝑌 (𝑖)
1∶𝑡 as the sequence of judgments for agent 𝑖 from time

1 to time 𝑡.
We inferred the structure selections shown in Fig. 4 and Fig. 6

using a normative (Bayesian) change-based judgment approach with a
single free parameter 𝜃 = 0.9. This parameter represents the execution
accuracy, that is, the probability with which the structure learner exe-
cutes a deterministic policy to update their belief 𝑃 (𝐺) about network
structures.

The structure learner predicted a judgment change for the target
agent 𝑣 from time 𝑡 = −1 to 𝑡 = 0, conditional on potential changes
n the judgments of agent 𝑣’s parent agents 𝑝𝑎(𝑣) from time 𝑡 = −2
o 𝑡 = −1. The structure learner combined changes in evidence from
ultiple parent agents using an additive combination function:

𝑌 𝑝𝑎(𝑣)
𝑡−2 →𝑌 𝑝𝑎(𝑣)

𝑡−1
=

∑

𝑖∈𝑝𝑎(𝑣)
𝛥𝑦(𝑖)𝑡−2→𝑦(𝑖)𝑡−1

. (A.4)

Given the assumptions above, the posterior probability of a specific
etwork structure 𝑔 underlying the sequences of judgments from 𝑛
gents is given by:

(𝑔|𝑌 (1)
1∶𝑡−1,… , 𝑌 (𝑛)

1∶𝑡−1) ∝ 𝑝(𝑌 (1)
1∶𝑡−1,… , 𝑌 (𝑛)

1∶𝑡−1|𝑔)𝑝(𝑔), (A.5)

here 𝑝(𝑔) is the prior probability of the structure (which is assumed to
e uniform) and 𝑝(𝑌 (1)

1∶𝑡−1,… , 𝑌 (𝑛)
1∶𝑡−1|𝑔) is the likelihood of the judgment

equences given 𝑔. For a given agent 𝑣 and structure 𝑔, if 𝑝𝑎(𝑣) =
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Fig. A.3. [a] Raw judgments provided by participants in Experiment 2. [b] Raw judgments provided by participants in Experiment 3..
or 𝛥𝑌 𝑝𝑎(𝑣)
𝑡−2 →𝑌 𝑝𝑎(𝑣)

𝑡−1
= 0, the likelihood that 𝑣 keeps their previous state

(i.e., 𝛥𝑦(𝑣)𝑡−1→𝑦(𝑣)𝑡0
= 0) is given by 𝜃 + 1−𝜃

𝑘 where 𝑘 = 7 is the number
of possible responses in our experiments. If 𝛥𝑌 𝑝𝑎(𝑣)

𝑡−2 →𝑌 𝑝𝑎(𝑣)
𝑡−1

> 0, the

likelihood of a non-negative change for 𝑣 is given by 𝜃
𝑘−𝑦(𝑣)𝑡−1+1

+ 1−𝜃
𝑘 .

If 𝛥𝑌 𝑝𝑎(𝑣)
𝑡−2 →𝑌 𝑝𝑎(𝑣)

𝑡−1
< 0, the likelihood of a non-positive change is given by

𝜃
𝑦(𝑣)𝑡−1

+ 1−𝜃
𝑘 .

Appendix B. Supplementary data

Supplementary material related to this article can be found online at
https://doi.org/10.1016/j.cognition.2023.105633. The data, code, and
supplementary tables supporting the findings in the present study are
available on GitHub at janphilippfranken/spacefish. A demo version of
our task is available here.
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